Trends in deep learning methodologies : algorithms, applications, and systems
Salvato in:
Autore principale: | Piuri, Vincenzo (1960-....). (Directeur de la publication) |
---|---|
Altri autori: | Srivastava, Rajshree (19..-....). (Directeur de la publication), Raj, Sandeep (19..-....)., Genovese, Angelo (1985-....). |
Natura: | E-Book |
Lingua: | Anglais |
Pubblicazione: |
London ; San Diego (Calif.) ; Cambridge (Mass.) :
Academic Press : Elsevier.
|
Soggetti: | |
Autres localisations: | Voir dans le Sudoc |
Riassunto: | "Trends in deep learning methodologies [...] covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more |
Accesso online: | Accès à l'E-book |
Documenti analoghi
-
Image, video processing and analysis, hardware, audio, acoustic and speech processing
di: Chellappa, Rama (1953-....).
Pubblicazione: 2013 -
Introduction au Deep Learning
di: Charniak, Eugene.
Pubblicazione: 2021 -
Deep learning
di: Kelleher, John D. (1974-....).
Pubblicazione: 2019 -
Micro-Doppler characteristics of radar targets
di: Zhang, Qun (19..-....).
Pubblicazione: 2016 -
Scilab de la théorie à la pratique.
di: Berger, Laurent (1963-....).
Pubblicazione: 2014