Hands-On Explainable AI (XAI) with Python : Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps
Enregistré dans:
Auteur principal: | Rothman, Denis. (Auteur) |
---|---|
Support: | E-Book |
Langue: | Anglais |
Publié: |
Birmingham :
Packt Publishing,
2020.
|
Autres localisations: | Voir dans le Sudoc |
Accès en ligne: | Accès à l'E-book |
Documents similaires
-
Deep Learning and XAI Techniques for Anomaly Detection : Integrate the theory and practice of deep anomaly explainability
par: Simon, Cher. -
Conference interpreting explained
par: Jones, Roderick.
Publié: 1998 -
Applied Machine Learning Explainability Techniques : Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more
par: Bhattacharya, Aditya.
Publié: 2022 -
Responsible AI in the Enterprise : Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI
par: Masood, Adnan. -
Pythonic AI : A beginner's guide to building AI applications in Python (English Edition)
par: Banerjee, Arindam.