Data feminism

Enregistré dans:
Détails bibliographiques
Auteur principal: D'Ignazio, Catherine (1975-....). (Auteur)
Autres auteurs: Klein, Lauren F. (19..-....; auteure en sciences sociales). (Auteur)
Support: E-Book
Langue: Anglais
Publié: Cambridge (Mass.) : MIT Press. C 2020.
Collection: Strong ideas.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism.Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics-one that is informed by intersectional feminist thought.Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever "speak for themselves."Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed. [D'après source : diffuseur]
Accès en ligne: Accès à l'E-book
Lien: Collection principale: Strong ideas / David Weinberger
LEADER 05343cmm a2200853 i 4500
001 ebook-243779526
005 20240328103302.0
007 cu|uuu---uuuuu
008 200505s2020||||us ||||g|||| ||||||eng d
020 |a 9780262358521 (édition électronique) 
024 7 |a 10.7551/mitpress/11805.001.0001  |2 DOI 
035 |a (OCoLC)1155912863 
035 |a FRCYB88881522 
035 |a FRCYB03588881522 
035 |a FRCYB07488881522 
035 |a FRCYB07888881522 
035 |a FRCYB08288881522 
035 |a FRCYB08888881522 
035 |a FRCYB09888881522 
035 |a FRCYB14088881522 
035 |a FRCYB17088881522 
035 |a FRCYB17988881522 
035 |a FRCYB18088881522 
035 |a FRCYB19188881522 
035 |a FRCYB19488881522 
035 |a FRCYB24288881522 
035 |a FRCYB24788881522 
035 |a FRCYB24888881522 
035 |a FRCYB25688881522 
035 |a FRCYB26088881522 
035 |a FRCYB26688881522 
035 |a FRCYB26788881522 
035 |a FRCYB26888881522 
035 |a FRCYB29388881522 
035 |a FRCYB29588881522 
035 |a FRCYB43288881522 
035 |a FRCYB55388881522 
035 |a FRCYB55488881522 
035 |a FRCYB55988881522 
035 |a FRCYB68488881522 
035 |a FRCYB68588881522 
035 |a FRCYB68688881522 
035 |a FRCYB085588881522 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |0 (IdRef)249914700  |1 http://www.idref.fr/249914700/id  |a D'Ignazio, Catherine  |d (1975-....).  |4 aut.  |e Auteur 
245 1 0 |a Data feminism   |c Catherine D'ignazio and Lauren F. Klein. 
256 |a Données textuelles. 
264 1 |a Cambridge (Mass.) :  |b MIT Press. 
264 4 |c C 2020. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
490 1 |a Ideas series 
500 |a Couverture (https://static.cyberlibris.com/books_upload/136pix/9780262358521.jpg). 
500 |a Titre provenant de la page de titre du document numérique. 
500 |a La pagination de l'édition imprimée correspondante est de 328 p. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism.Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics-one that is informed by intersectional feminist thought.Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever "speak for themselves."Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed. [D'après source : diffuseur] 
538 |a Configuration requise : navigateur internet. 
650 7 |0 (IdRef)030527651  |1 http://www.idref.fr/030527651/id  |a Féminisme et sciences.  |2 ram 
650 7 |0 (IdRef)167193686  |1 http://www.idref.fr/167193686/id  |a Données massives  |0 (IdRef)165366400  |1 http://www.idref.fr/165366400/id  |x Recherche quantitative  |0 (IdRef)269230165  |1 http://www.idref.fr/269230165/id  |x Société.  |2 ram 
650 7 |0 (IdRef)167193686  |1 http://www.idref.fr/167193686/id  |a Données massives  |0 (IdRef)165366400  |1 http://www.idref.fr/165366400/id  |x Recherche quantitative  |0 (IdRef)027791157  |1 http://www.idref.fr/027791157/id  |x Aspect moral.  |2 ram 
650 7 |0 (IdRef)167193686  |1 http://www.idref.fr/167193686/id  |a Données massives  |0 (IdRef)027365581  |1 http://www.idref.fr/027365581/id  |x Pouvoir (sciences sociales).  |2 ram 
650 7 |0 (IdRef)027762300  |1 http://www.idref.fr/027762300/id  |a Discrimination sexuelle.  |2 ram 
700 1 |0 (IdRef)196679710  |1 http://www.idref.fr/196679710/id  |a Klein, Lauren F.  |d (19..-....;   |c auteure en sciences sociales).  |4 aut.  |e Auteur 
760 0 |t Strong ideas / David Weinberger  |d Cambridge (Mass.) : The MIT Press, 2019  |w (ABES)24137829X 
830 0 |a Strong ideas.  |f 2019 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88881522  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 243779526