Deep learning

Enregistré dans:
Détails bibliographiques
Auteur principal: Kelleher, John D. (1974-....). (Auteur)
Support: E-Book
Langue: Anglais
Publié: Cambridge (Mass.) : The MIT Press, 2019.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: "Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning major trends, possible developments, and significant challenges."
Accès en ligne: Accès à l'E-book
LEADER 04101cmm a2200685 i 4500
001 ebook-238409511
005 20240116110624.0
007 cr|uuu---uuuuu
008 191003s2019||||us ||||g|||| ||||||eng d
020 |a 9780262354899 (en ligne) 
024 7 |a https://doi.org/10.7551/mitpress/11171.001.0001  |2 DOI 
035 |a (OCoLC)1137786129 
035 |a FRCYB88872853 
035 |a FRCYB08288872853 
035 |a FRCYB08888872853 
035 |a FRCYB09888872853 
035 |a FRCYB14088872853 
035 |a FRCYB17088872853 
035 |a FRCYB17988872853 
035 |a FRCYB19188872853 
035 |a FRCYB19588872853 
035 |a FRCYB20188872853 
035 |a FRCYB24288872853 
035 |a FRCYB24888872853 
035 |a FRCYB25688872853 
035 |a FRCYB26088872853 
035 |a FRCYB26888872853 
035 |a FRCYB27488872853 
035 |a FRCYB29388872853 
035 |a FRCYB29588872853 
035 |a FRCYB30388872853 
035 |a FRCYB55488872853 
035 |a FRCYB55988872853 
035 |a FRCYB56788872853 
035 |a FRCYB57188872853 
035 |a FRCYB63288872853 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |0 (IdRef)193181347  |1 http://www.idref.fr/193181347/id  |a Kelleher, John D.  |d (1974-....).  |4 aut.  |e Auteur 
245 1 0 |a Deep learning   |c John D. Kelleher. 
256 |a Données textuelles. 
264 1 |a Cambridge (Mass.) :  |b The MIT Press,  |c 2019. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static.cyberlibris.com/books_upload/136pix/9780262354899.jpg). 
500 |a Titre provenant de la page de titre du document numérique. 
500 |a La pagination de l'édition imprimée correspondante est de 298 p. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a "Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning major trends, possible developments, and significant challenges."  |c description plateforme. 
538 |a Configuration requise : navigateur internet. 
650 7 |0 (IdRef)223540633  |1 http://www.idref.fr/223540633/id  |a Apprentissage profond.  |2 ram 
650 7 |0 (IdRef)027940373  |1 http://www.idref.fr/027940373/id  |a Apprentissage automatique.  |2 ram 
650 7 |0 (IdRef)027234541  |1 http://www.idref.fr/027234541/id  |a Intelligence artificielle.  |2 ram 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88872853  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 238409511