Big Data Analysis with Python : Combine Spark and Python to unlock the powers of parallel computing and machine learning

Enregistré dans:
Détails bibliographiques
Auteur principal: Marin, Ivan (1973-....). (Auteur)
Autres auteurs: Shukla, Ankit. (Auteur), VK, Sarang.
Support: E-Book
Langue: Anglais
Publié: Birmingham : Packt Publishing, 2019.
Autres localisations: Voir dans le Sudoc
Résumé: Get to grips with processing large volumes of data and presenting it as engaging, interactive insights using Spark and Python.Key Features : Get a hands-on, fast-paced introduction to the Python data science stack ; Explore ways to create useful metrics and statistics from large datasets ; Create detailed analysis reports with real-world data.Processing big data in real time is challenging due to scalability, information inconsistency, and fault tolerance. Big Data Analysis with Python teaches you how to use tools that can control this data avalanche for you. With this book, you'll learn practical techniques to aggregate data into useful dimensions for posterior analysis, extract statistical measurements, and transform datasets into features for other systems.The book begins with an introduction to data manipulation in Python using pandas. You'll then get familiar with statistical analysis and plotting techniques. With multiple hands-on activities in store, you'll be able to analyze data that is distributed on several computers by using Dask. As you progress, you'll study how to aggregate data for plots when the entire data cannot be accommodated in memory. You'll also explore Hadoop (HDFS and YARN), which will help you tackle larger datasets. The book also covers Spark and explains how it interacts with other tools.By the end of this book, you'll be able to bootstrap your own Python environment, process large files, and manipulate data to generate statistics, metrics, and graphs. What you will learn : Use Python to read and transform data into different formats ; Generate basic statistics and metrics using data on disk ; Work with computing tasks distributed over a cluster ; Convert data from various sources into storage or querying formats ; Prepare data for statistical analysis, visualization, and machine learning ; Present data in the form of effective visuals. Big Data Analysis with Python is designed for Python developers, data analysts, and data scientists who want to get hands-on with methods to control data and transform it into impactful insights. Basic knowledge of statistical measurements and relational databases will help you to understand various concepts explained in this book.
Accès en ligne: Accès à l'E-book
LEADER 04443cmm a2200553 i 4500
001 ebook-236680137
005 20240321105630.0
007 cr|uuu---uuuuu
008 190626s2019||||uk ||||g|||| ||||||eng d
020 |a 9781789950731 
035 |a (OCoLC)1147748139 
035 |a FRCYB14088869932 
035 |a FRCYB19188869932 
035 |a FRCYB24288869932 
035 |a FRCYB24788869932 
035 |a FRCYB26088869932 
035 |a FRCYB26888869932 
035 |a FRCYB27488869932 
035 |a FRCYB29388869932 
035 |a FRCYB29588869932 
035 |a FRCYB55488869932 
035 |a FRCYB55988869932 
035 |a FRCYB88869932 
035 |a FRCYB56788869932 
035 |a FRCYB07488869932 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |0 (IdRef)137963114  |1 http://www.idref.fr/137963114/id  |a Marin, Ivan  |d (1973-....).  |4 aut.  |e Auteur 
245 1 0 |a Big Data Analysis with Python :  |b Combine Spark and Python to unlock the powers of parallel computing and machine learning   |c Ivan Marin, Ankit Shukla, Sarang VK. 
256 |a Données textuelles. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2019. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static.cyberlibris.com/books_upload/136pix/9781789950731.jpg). 
500 |a Titre provenant de la page de titre du document numérique. 
500 |a La pagination de l'édition imprimée correspondante est de 276 p. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
516 |a Données textuelles (1 fichier PDF) 
520 |a Get to grips with processing large volumes of data and presenting it as engaging, interactive insights using Spark and Python.Key Features : Get a hands-on, fast-paced introduction to the Python data science stack ; Explore ways to create useful metrics and statistics from large datasets ; Create detailed analysis reports with real-world data.Processing big data in real time is challenging due to scalability, information inconsistency, and fault tolerance. Big Data Analysis with Python teaches you how to use tools that can control this data avalanche for you. With this book, you'll learn practical techniques to aggregate data into useful dimensions for posterior analysis, extract statistical measurements, and transform datasets into features for other systems.The book begins with an introduction to data manipulation in Python using pandas. You'll then get familiar with statistical analysis and plotting techniques. With multiple hands-on activities in store, you'll be able to analyze data that is distributed on several computers by using Dask. As you progress, you'll study how to aggregate data for plots when the entire data cannot be accommodated in memory. You'll also explore Hadoop (HDFS and YARN), which will help you tackle larger datasets. The book also covers Spark and explains how it interacts with other tools.By the end of this book, you'll be able to bootstrap your own Python environment, process large files, and manipulate data to generate statistics, metrics, and graphs. What you will learn : Use Python to read and transform data into different formats ; Generate basic statistics and metrics using data on disk ; Work with computing tasks distributed over a cluster ; Convert data from various sources into storage or querying formats ; Prepare data for statistical analysis, visualization, and machine learning ; Present data in the form of effective visuals. Big Data Analysis with Python is designed for Python developers, data analysts, and data scientists who want to get hands-on with methods to control data and transform it into impactful insights. Basic knowledge of statistical measurements and relational databases will help you to understand various concepts explained in this book. 
538 |a Configuration requise : navigateur internet. 
700 1 |0 (IdRef)250948419  |1 http://www.idref.fr/250948419/id  |a Shukla, Ankit.  |4 aut.  |e Auteur 
700 1 |0 (IdRef)250948435  |1 http://www.idref.fr/250948435/id  |a VK, Sarang.  |4 aut.  |e Auteur 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88869932  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 236680137