Hypoelliptic Laplacian and Orbital Integrals

Enregistré dans:
Détails bibliographiques
Auteur principal: Bismut, Jean-Michel (1948-....). (Auteur)
Support: E-Book
Langue: Anglais
Publié: Princeton ; N.J : Princeton University Press, 2011.
Collection: Annals of Mathematics Studies ; 177
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Main description: This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof
Accès en ligne: Accès à l'E-book
Lien: Collection principale: Annals of Mathematics Studies
LEADER 04799cmm a2200841 4500
001 ebook-187958386
005 20220301004121.0
007 cr|uuu---uuuuu
008 150901q2011uuuugw |||| |||d ||||||eng d
020 |a 9781400840571 
020 |a 9781400840571 
024 7 |a 10.1515/9781400840571  |2 DOI 
035 |a 199244537  |9 sudoc 
035 |a (OCoLC)780498785 
035 |a FRCYB07488838025 
035 |a FRCYB88838025 
035 |a FRCYB08288838025 
035 |a FRCYB14088838025 
035 |a FRCYB24288838025 
035 |a FRCYB26088838025 
035 |a FRCYB26888838025 
035 |a FRCYB29388838025 
035 |a FRCYB29588838025 
035 |a FRCYB55488838025 
035 |a FRCYB55988838025 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
044 |a gw  |a us 
050 4 |a QA377 
050 4 |a QA377  |b .B57 2011eb 
050 4 |a MAT 
050 4 |a MAT012020 
100 1 |0 (IdRef)031658814  |1 http://www.idref.fr/031658814/id  |a Bismut, Jean-Michel  |d (1948-....).  |4 aut.  |e Auteur 
245 1 0 |a Hypoelliptic Laplacian and Orbital Integrals   |c Jean-Michel Bismut. 
256 |a Données textuelles. 
264 1 |a Princeton ;  |a N.J :  |b Princeton University Press,  |c 2011. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
490 1 |a Annals of Mathematics Studies ;  |v 177 
500 |a La pagination de l'édition imprimée correspondante est de : 344 p. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a Main description: This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof 
538 |a Nécessite un navigateur et un lecteur de fichier PDF. 
650 0 |a Definite integrals.  |2 lc 
650 0 |a Differential equations, Hypoelliptic.  |2 lc 
650 0 |a Laplacian operator.  |2 lc 
650 0 |a Orbit method.  |2 lc 
650 0 |a Definite integrals.  |2 lc 
650 0 |a Differential equations, Hypoelliptic.  |2 lc 
650 0 |a Geometry and Topology.  |2 lc 
650 0 |a Laplacian operator.  |2 lc 
650 0 |a Mathematics.  |2 lc 
650 0 |a Mathematik.  |2 lc 
650 0 |a Metric spaces.  |2 lc 
650 0 |a Orbit method.  |2 lc 
650 0 |a Symplectic groups.  |2 lc 
650 0 |a Trace formulas.  |2 lc 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |0 (IdRef)027219089  |1 http://www.idref.fr/027219089/id  |a Analyse mathématique.  |2 ram 
650 7 |0 (IdRef)027330443  |1 http://www.idref.fr/027330443/id  |a Intégrales.  |2 ram 
650 7 |0 (IdRef)027818438  |1 http://www.idref.fr/027818438/id  |a Laplacien.  |2 ram 
650 7 |0 (IdRef)027884511  |1 http://www.idref.fr/027884511/id  |a Noyaux (analyse fonctionnelle).  |2 ram 
650 7 |0 (IdRef)031697208  |1 http://www.idref.fr/031697208/id  |a Équations différentielles hypoelliptiques.  |2 ram 
760 0 |t Annals of Mathematics Studies  |g 177 
830 0 |a Annals of Mathematics Studies ;  |v 177 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88838025  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 187958386