|
|
|
|
LEADER |
04799cmm a2200841 4500 |
001 |
ebook-187958386 |
005 |
20220301004121.0 |
007 |
cr|uuu---uuuuu |
008 |
150901q2011uuuugw |||| |||d ||||||eng d |
020 |
|
|
|a 9781400840571
|
020 |
|
|
|a 9781400840571
|
024 |
7 |
|
|a 10.1515/9781400840571
|2 DOI
|
035 |
|
|
|a 199244537
|9 sudoc
|
035 |
|
|
|a (OCoLC)780498785
|
035 |
|
|
|a FRCYB07488838025
|
035 |
|
|
|a FRCYB88838025
|
035 |
|
|
|a FRCYB08288838025
|
035 |
|
|
|a FRCYB14088838025
|
035 |
|
|
|a FRCYB24288838025
|
035 |
|
|
|a FRCYB26088838025
|
035 |
|
|
|a FRCYB26888838025
|
035 |
|
|
|a FRCYB29388838025
|
035 |
|
|
|a FRCYB29588838025
|
035 |
|
|
|a FRCYB55488838025
|
035 |
|
|
|a FRCYB55988838025
|
040 |
|
|
|a ABES
|b fre
|e AFNOR
|
041 |
0 |
|
|a eng
|2 639-2
|
044 |
|
|
|a gw
|a us
|
050 |
|
4 |
|a QA377
|
050 |
|
4 |
|a QA377
|b .B57 2011eb
|
050 |
|
4 |
|a MAT
|
050 |
|
4 |
|a MAT012020
|
100 |
1 |
|
|0 (IdRef)031658814
|1 http://www.idref.fr/031658814/id
|a Bismut, Jean-Michel
|d (1948-....).
|4 aut.
|e Auteur
|
245 |
1 |
0 |
|a Hypoelliptic Laplacian and Orbital Integrals
|c Jean-Michel Bismut.
|
256 |
|
|
|a Données textuelles.
|
264 |
|
1 |
|a Princeton ;
|a N.J :
|b Princeton University Press,
|c 2011.
|
336 |
|
|
|b txt
|2 rdacontent
|
337 |
|
|
|b c
|2 rdamedia
|
337 |
|
|
|b b
|2 isbdmedia
|
338 |
|
|
|b ceb
|2 RDAfrCarrier
|
490 |
1 |
|
|a Annals of Mathematics Studies ;
|v 177
|
500 |
|
|
|a La pagination de l'édition imprimée correspondante est de : 344 p.
|
506 |
|
|
|a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition
|
520 |
|
|
|a Main description: This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof
|
538 |
|
|
|a Nécessite un navigateur et un lecteur de fichier PDF.
|
650 |
|
0 |
|a Definite integrals.
|2 lc
|
650 |
|
0 |
|a Differential equations, Hypoelliptic.
|2 lc
|
650 |
|
0 |
|a Laplacian operator.
|2 lc
|
650 |
|
0 |
|a Orbit method.
|2 lc
|
650 |
|
0 |
|a Definite integrals.
|2 lc
|
650 |
|
0 |
|a Differential equations, Hypoelliptic.
|2 lc
|
650 |
|
0 |
|a Geometry and Topology.
|2 lc
|
650 |
|
0 |
|a Laplacian operator.
|2 lc
|
650 |
|
0 |
|a Mathematics.
|2 lc
|
650 |
|
0 |
|a Mathematik.
|2 lc
|
650 |
|
0 |
|a Metric spaces.
|2 lc
|
650 |
|
0 |
|a Orbit method.
|2 lc
|
650 |
|
0 |
|a Symplectic groups.
|2 lc
|
650 |
|
0 |
|a Trace formulas.
|2 lc
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations
|x Partial.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|0 (IdRef)027219089
|1 http://www.idref.fr/027219089/id
|a Analyse mathématique.
|2 ram
|
650 |
|
7 |
|0 (IdRef)027330443
|1 http://www.idref.fr/027330443/id
|a Intégrales.
|2 ram
|
650 |
|
7 |
|0 (IdRef)027818438
|1 http://www.idref.fr/027818438/id
|a Laplacien.
|2 ram
|
650 |
|
7 |
|0 (IdRef)027884511
|1 http://www.idref.fr/027884511/id
|a Noyaux (analyse fonctionnelle).
|2 ram
|
650 |
|
7 |
|0 (IdRef)031697208
|1 http://www.idref.fr/031697208/id
|a Équations différentielles hypoelliptiques.
|2 ram
|
760 |
0 |
|
|t Annals of Mathematics Studies
|g 177
|
830 |
|
0 |
|a Annals of Mathematics Studies ;
|v 177
|
856 |
|
|
|q HTML
|u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88838025
|w Données éditeur
|z Accès à l'E-book
|
886 |
2 |
|
|2 unimarc
|a 181
|a i#
|b xxxe##
|
993 |
|
|
|a E-Book
|
994 |
|
|
|a BNUM
|
995 |
|
|
|a 187958386
|