On the Cohomology of Certain Non-Compact Shimura Varieties

Enregistré dans:
Détails bibliographiques
Auteur principal: Morel, Sophie (1979-....; mathématicienne). (Auteur)
Support: E-Book
Langue: Anglais
Publié: Princeton ; N.J : Princeton University Press, 2010.
Collection: Annals of Mathematics Studies ; 173
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Main description: This book studies the intersection cohomology of the Shimura varieties associated to unitary groups of any rank over Q. In general, these varieties are not compact. The intersection cohomology of the Shimura variety associated to a reductive group G carries commuting actions of the absolute Galois group of the reflex field and of the group G(Af) of finite adelic points of G. The second action can be studied on the set of complex points of the Shimura variety. In this book, Sophie Morel identifies the Galois action--at good places--on the G(Af)-isotypical components of the cohomology. Morel uses the method developed by Langlands, Ihara, and Kottwitz, which is to compare the Grothendieck-Lefschetz fixed point formula and the Arthur-Selberg trace formula. The first problem, that of applying the fixed point formula to the intersection cohomology, is geometric in nature and is the object of the first chapter, which builds on Morel's previous work. She then turns to the group-theoretical problem of comparing these results with the trace formula, when G is a unitary group over Q. Applications are then given. In particular, the Galois representation on a G(Af)-isotypical component of the cohomology is identified at almost all places, modulo a non-explicit multiplicity. Morel also gives some results on base change from unitary groups to general linear groups
Accès en ligne: Accès à l'E-book
Lien: Collection principale: Annals of Mathematics Studies
LEADER 03976cmm a2200721 4500
001 ebook-187955492
005 20220301005721.0
007 cr|uuu---uuuuu
008 150901q2010uuuugw |||| |||d ||||||eng d
020 |a 9781400835393 
020 |a 9781400835393 
024 7 |a 10.1515/9781400835393  |2 DOI 
035 |a 199244561  |9 sudoc 
035 |a (OCoLC)1147763247 
035 |a FRCYB07488838027 
035 |a FRCYB88838027 
035 |a FRCYB08288838027 
035 |a FRCYB14088838027 
035 |a FRCYB24288838027 
035 |a FRCYB26088838027 
035 |a FRCYB26888838027 
035 |a FRCYB29388838027 
035 |a FRCYB29588838027 
035 |a FRCYB55488838027 
035 |a FRCYB55988838027 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
044 |a gw  |a us 
050 4 |a QA242.5 
050 4 |a QA242.5  |b .M67 2010eb 
050 4 |a MAT 
050 4 |a MAT038000 
082 0 |a 516.3/52  |2 22 
100 1 |0 (IdRef)096117737  |1 http://www.idref.fr/096117737/id  |a Morel, Sophie  |d (1979-....;   |c mathématicienne).  |4 aut.  |e Auteur 
245 1 0 |a On the Cohomology of Certain Non-Compact Shimura Varieties   |c Sophie Morel. 
256 |a Données textuelles. 
260 |a Princeton ;  |a N.J :  |b Princeton University Press,  |c 2010. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
490 1 |a Annals of Mathematics Studies ;  |v 173 
500 |a La pagination de l'édition imprimée correspondante est de : 232 p. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a Main description: This book studies the intersection cohomology of the Shimura varieties associated to unitary groups of any rank over Q. In general, these varieties are not compact. The intersection cohomology of the Shimura variety associated to a reductive group G carries commuting actions of the absolute Galois group of the reflex field and of the group G(Af) of finite adelic points of G. The second action can be studied on the set of complex points of the Shimura variety. In this book, Sophie Morel identifies the Galois action--at good places--on the G(Af)-isotypical components of the cohomology. Morel uses the method developed by Langlands, Ihara, and Kottwitz, which is to compare the Grothendieck-Lefschetz fixed point formula and the Arthur-Selberg trace formula. The first problem, that of applying the fixed point formula to the intersection cohomology, is geometric in nature and is the object of the first chapter, which builds on Morel's previous work. She then turns to the group-theoretical problem of comparing these results with the trace formula, when G is a unitary group over Q. Applications are then given. In particular, the Galois representation on a G(Af)-isotypical component of the cohomology is identified at almost all places, modulo a non-explicit multiplicity. Morel also gives some results on base change from unitary groups to general linear groups 
538 |a Nécessite un navigateur et un lecteur de fichier PDF. 
650 0 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 lc 
650 0 |a MATHEMATICS  |x Topology.  |2 lc 
650 0 |a Geometry and Topology.  |2 lc 
650 0 |a Homology theory.  |2 lc 
650 0 |a Mathematics.  |2 lc 
650 0 |a Mathematik.  |2 lc 
650 0 |a Shimura varieties.  |2 lc 
650 0 |a Homology theory.  |2 lc 
650 0 |a Shimura varieties.  |2 lc 
650 7 |0 (IdRef)027424626  |1 http://www.idref.fr/027424626/id  |a Homologie.  |2 ram 
650 7 |0 (IdRef)035208333  |1 http://www.idref.fr/035208333/id  |a Shimura, Variétés de.  |2 ram 
760 0 |t Annals of Mathematics Studies  |g 173 
830 0 |a Annals of Mathematics Studies ;  |v 173 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88838027  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 187955492