Trends in deep learning methodologies : algorithms, applications, and systems
সংরক্ষণ করুন:
প্রধান লেখক: | |
---|---|
অন্যান্য লেখক: | , , |
বিন্যাস: | E-Book |
ভাষা: | Anglais |
প্রকাশিত: |
London ; San Diego (Calif.) ; Cambridge (Mass.) :
Academic Press : Elsevier.
|
বিষয়গুলি: | |
Autres localisations: | Voir dans le Sudoc |
সংক্ষিপ্ত: | "Trends in deep learning methodologies [...] covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more |
অনলাইন ব্যবহার করুন: | Accès à l'E-book |
সংক্ষিপ্ত: | "Trends in deep learning methodologies [...] covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more |
---|---|
উপাদানের বিবরণ: | Couverture (https://static2.cyberlibris.com/books_upload/136pix/9780128232682.jpg). |
গ্রন্থ-পঞ্জী: | Réf. bibliographiques en fin de chapitres. Index. |
আইসবিএন: | 9780128232682 |
প্রবেশাধিকার: | L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement |